Dr. JAN SPITSBERGEN, Assistant Professor, Microbiology Department

JS Office  Salmon Disease Laboratory JanS2
Phone  541-737-5055
FAX  541-737-2166
Email  jan.spitsbergen@oregonstate.edu
Education PhD Cornell University; DVM Michigan State

MB 330  Disease and Society (3 cr). Syllabus


Teaching Experience:  Taught Introductory and Advanced Finfish Histology, Histopathology and Neoplasia for 7 years in the Aquavet I and Aquavet II programs (Cornell Aquavet) while on the faculty in the College of Veterinary Medicine at Cornell University; have participated in team teaching of Health and Colony Management of Laboratory Fish for 7 years at the Mount Desert Island Biological Laboratory, Bar Harbor, Maine; participated in curriculum revision at the College of Veterinary Medicine at Cornell to institute Socratic case-based small group learning as a key feature of the medical education process.

Ecampus:   Adapted Microbiology 330, Disease and Society, for presentation as an Extended Campus course first offered in Summer 2014.  The course focuses on the effects of social and economic inequality on health and disease in the U.S. and globally and is part of the Baccalaureate Core at Oregon State Univrsity.  It fulfills the requirement for credits in the Difference Power and Discrimination category. 

Participated in team taught course Fish and Invertebrate Health Management for students in the Aquarium Science Program at Oregon Coast Community College 2011-2015.  Taught infectious and noninfectious diseases of aquatic animals.

Research: I am a fisheries scientist and veterinary pathologist (Diplomate, American College of Veterinary Pathologists) who has conducted laboratory research and field epidemiologic studies in fish pathology and toxicology for 30 years.

My research has included studies of

  • 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicology and associated lesions in a variety of fish species,
  • studies of interactions of halogenated aromatic hydrocarbons with disease resistance and immune responses of salmonids,
  • early life stage toxicity of TCDD and PCBs in salmonids,
  • effects of TCDD on sexual development,
  • fecundity and fertility in zebrafish,
  • nutritional pathology, and
  • field studies investigating the causes of tumor epizootics in brown bullhead, white suckers and lake trout.

My research group at Cornell University discovered thiamine deficiency as the basis for a devastating, longstanding stage-specific early life stage mortality problem causing reproductive failure in landlocked Atlantic salmon in certain of New York’s Finger Lakes.  We found that consumption of a diet high in the introduced forage fish alewives caused the thiamine deficiency in breeding female fish due to high levels of thiaminase in the alewife tissues.

Recently I have investigated dietary, husbandry, infectious, and genetic influences on susceptibility of zebrafish to spontaneous and carcinogen-induced tumors.  I have collaborated with Dr. Donald Buhler of Oregon State University to clarify the roles of various cytochrome P450 enzymes in the carcinogenesis processes in zebrafish. I have a longstanding collaboration with Dr. Zhiyuan Gong of the National University of Singapore to characterize gene expression in liver neoplasia using the zebrafish model to better understand the role of specific oncogenes and interactions between suites of oncogenes in the carcinogenesis process.

A new focus area of my current research is development of a zebrafish model for study of the pathogenesis of emerging fungal diseases and for antifungal drug discovery.  Worldwide fungal diseases are increasing in importance in plants and animals in part due to global climate change.  Also increasing numbers of people with compromised immune systems due to organ transplants, cancer chemotherapy and AIDS have made opportunistic fungal infections a growing problem around the world.  Invasive fungal infection due to emerging fungal agent Cryptococcus gattii is a relatively new problem in the Pacific Northwest.  Historically, this fungus occurred only in the tropics, subtropics and Mediterranean climates.  However, since 1999, invasive infections with the fungus were recognized in people as well as in domestic and wild animal species on Vancouver Island, British Columbia.  Since then, the fungus has spread into Washington, Oregon and adjacent states in the west and northwestern U.S.  In tropical sites in Australia, this fungus is associated with the Eucalpytus trees, but in the Pacific Northwest, the fungus inhabits a different set of trees, including Douglas fir, hemlock and madrone.  Most fungi causing invasive fungal infections including Candida albicans, non-albicans species of Candida, Aspergillus, and Cryptococcus neoformans infect severely immunocompromised hosts.  However, both in the tropics and in the Pacific Northwest, Cryptococcus gattii is more likely to affect people and animals with apparently normal immune systems than the typical invasive fungal species.  Thus, environmental factors that may increase susceptibility to infection by Cryptococcus gattii are of interest.  Actually, when the medical histories of patients with invasive C. gattii infections are carefully studied, nearly 50 percent of these people have taken immunosuppressive drugs or have other medical conditions which impair immune defenses.  JanS

Currently, mortality rates due to invasive fungal infections are unacceptably high in part because often the diseases are not diagnosed early.  Symptoms of these infections may mimic other diseases such as influenza, so that if the index of suspicion by clinicians is not high due to a known high local incidence of disease, invasive fungal infection is not on the list of differential diagnoses early on.  Better clinical markers indicating very early stages of invasive fungal infection are needed.  Also, there is a critical need for a wider variety of antifungal drugs to treat fungal infections that become resistant to the relatively limited number of antifungal drugs currently available.  Early life stages of zebrafish provide a cost-effective model for high throughput drug discovery because of their small size and transparency, allowing visualization of fungal infections in vivo.  For the first 2 weeks of life, zebrafish can be reared in 96 well microtiter plates which are readily used for robotic drug discovery systems.


Li, Y., Li, H., Spitsbergen, J.M., Gong, Z. 2017.  Males develop faster and more severe hepatocellular carcinoma than females in krasV12 transgenic zebrafish. Nature Scientific Reports. 7:41280 | DOI: 10.1038/srep41280. https://www.nature.com/articles/srep41280

Grzelak, A.G., Davis, D.J., Caraker, S.M., Crim, M.J., Spitsbergen, J.M., Wiedmeyer, C.E.  2017. in press.  Stress leukogram induced by acute and chronic stress in zebrafish (Danio rerio).  Comparative Medicine 67 (4): 1-7. https://www.ncbi.nlm.nih.gov/pubmed/28349861

Nguyen A.T., Koh V., Spitsbergen J.M., Gong Z. 2016. Development of a conditional liver tumor model by mifepristone-inducible Cre recombination to control oncogenic krasV12 expression in transgenic zebrafish. Scientific Reports 6:19559.  doi:10.1038/srep19559. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4726387/

Cooper, T.C., Murray, K. N., Spagnoli, S., Spitsbergen, J.M. Primary intestinal and vertebral chordomas in laboratory zebrafish (Danio rerio).  2015. Veterinary Pathology 52(2):388-92.  2014 Epub 10.1177/0300985814537531. https://www.ncbi.nlm.nih.gov/pubmed/24913269

Cooper, T.C., Spitsbergen, J.M.  2015.  Valvular and mural endocardiosis in aging zebrafish (Danio rerio).  Veterinary Pathology 53(2):504-9. https://www.ncbi.nlm.nih.gov/pubmed/26169384

Wolf, J.C., Baumgartner, W.A., Blazer, V.S., Camus, A.C., Engelhardt, J.A., Fournie, J.W., Frasca, S., Groman, D.B., Kent, M.L., Khoo, L.H., Law, J.M., Lombardini, E.D., Ruehl-Fehlert, C., Segner, H.E., Smith, S.A., Spitsbergen, J.M., Weber, K., Wolfe, M.J.  2015.  Non-lesions, misdiagnoses, missed diagnoses, and other interpretive challenges in fish histopathology studies: a guide for investigators, authors, reviewers, and readers.  Toxicol. Pathol.  43(3):297-325. https://www.ncbi.nlm.nih.gov/pubmed/25112278

EvasonK.J., Francisco, M.T., del Pilar Lopez Pazmino, M., Hale, G.G., Gordan,J.D., Kakar, S., Spitsbergen, J.M., Goga, A., Stainier, D.Y.R.  2015.  Zebrafish drug screen identifies the c-Jun N-terminal kinase pathway as a therapeutic target of β-catenin driven liver tumorigenesis.  PLOS Genetics. 11(7):E1005305. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4489858/

Sun, L., Nguyen, a.T., Emelyanov, A., Spitsbergen, J.M., gong, Z.  2015.  Myc-induced liver tumors in transgenic zebrafish can regress in tp53 null mutants.  PLOS One.  10(1):e0117249.  http://www.ncbi.nlm.nih.gov/pubmed/25612309.

Ju, B.,Chen, W., Orr, B., Spitsbergen, J.M., Sujuan, J., Eden, C.J., Henson, H.E., Taylor, M.R.  2015.  Oncogenic KRAS promotes malignant brain tumors in zebrafish.  Molecular Cancer 14(1):18.  http://www.ncbi.nlm.nih.gov/pubmed/25644510.

Ju, B., Chen, W., Spitsbergen, J.M., Lu, J., Vogel, P., Peterson, J.L., Wang, M., Hensen, H.E., Jia, S., Parupalli, C., Taylor, M.R.  2014.  Activation of sonic hedgehog signaling in neural progenitor cells promotes glioma development in the zebrafish optic pathway.  Oncogenesis 3, e96; doi:10.1038/oncsis.2014.10.  http://www.ncbi.nlm.nih.gov/pubmed/24686726.

Stewart, A.M., Braubach, O., Spitsbergen, J., Gerlai, R., Kalueff, A.V.  2014.  Zebrafish models for translational neuroscience research:  from tank to bedside.  Trends Neurosci 37:264-278.  http://www.ncbi.nlm.nih.gov/pubmed/24726051.

Wolf, J.C., Baumgartner, W.A., Blazer, V.S., Camus, A.C., Engelhardt, J.A., Fournie, J.W., Frasca, S., Groman, D.B., Kent, M.L., Khoo, L.H., Law, J.M., Lombardini, E.D., Ruehl-Fehlert, C., Segner, H.E., Smith, S.A., Spitsbergen, J.M., Weber, K., Wolfe, M.J.  2014.  Non-lesions, misdiagnoses, missed diagnoses, and other interpretive challenges in fish histopathology studies:  A guide for investigators, authors, reviewers, and readers.  Toxicol. Pathol. Epub DOI: 10.11770192623314540229.

Liu, Q., Spitsbergen, J.M., Cariou, R., Huang, C.Y. Jiang, N., Goetz, G., Hutz, R.J., Tonellato, P.J., Caravan, M.J. 3rd.  2014.  Histopathologic alterations associated with global gene expression due to chronic dietary TCDD exposure in juvenile zebrafish.  PLoS One 9:e100910.  http://www.ncbi.nlm.nih.gov/pubmed/24988445.

Chew, T.W., Liu, X.J., Liu, L., Spitsbergen, J.M., Gong, Z., Low, B.C.  2014.  Crosstalk of Ras and Rho:  activation of RhoA abates Kras-induced liver tumorigenesis in transgenic zebrafish models.  Oncogene  33(21):2717-2727.

Li, Z., Zheng, W., Wang, Z., Zeng, Z., Zhan H., Li, C., Zhou, L., Yan, C., Spitsbergen, J.M., Gong, Z.  2013.  A transgenic zebrafish liver tumor model with inducible Myc expression reveals conserved Myc signatures with mammalian liver tumors.  Disease Models and Mechanisms 6(2):414-423.

Liu, Q., Rise, M., Spitsbergen, J.M., McGraw, J.E., Goetz, G., Hori, T.S., Hutz, R., Carvan, M.  2013.  Gene expression and pathologic alteration in juvenile rainbow trout due to chronic dietary TCDD exposure.  Aquatic Toxicology 140-141:356-68.

Spitsbergen, J.M., Frattini, S.A., Bowser, P.R., Getchell, R.G., Coffee, L.T., Wolfe, M.J., Fisher, J.P., Marinovic, S.J., Harr, K.E.  2013.  Epizootic neoplasia of the lateral line system of lake trout (Salvelinus namaycush) in New York's finger Lakes.  Veterinary Pathology 50(3):418-33.  http://www.ncbi.nlm.nih.gov/pubmed/23528941.

Nguyen, A.T., Emelyanov, A., Koh, V.C.H., Spitsbergen, J.M., Parinov, S., Gong, Z.  2012. An inducible krasV12 transgenic zebrafish model for liver tumorigenesis and chemical drug screening.  Disease Models and Mechanisms 5(1):63-72. (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3255544/?tool=pubmed)

Li, Z., Huang, X., Zhan, H., Zeng, Z., Li, C., Spitsbergen, J.M., Meierjohann, Schartl, S.M., Gong, Z.  2012.  Inducible and repressible oncogene-addicted hepatocellular carcinoma in Tet-on xmrk transgenic zebrafish.  J. Hepatology 56(2):419-25. (http://www.ncbi.nlm.nih.gov/pubmed/21888874?dopt=Citation)

Spitsbergen, J.M., Peterson, T.S., D.R. Buhler.  2012.  Neoplasia in laboratory zebrafish.  ILAR Journal 53(2):14-125.  http://www.ncbi.nlm.nih.gov/pubmed/23382343.

Rodriguez-Mari A., Wilson C., Titus, T.A., Canestro, C., Bremiller R.A.,Yan Y.L., Nanda, I., Johnston, K., Kanki, J.P., Gray, E.M., He, X. , Schindler, D., Spitsbergen, J.M., Postlethwait J.H. 2011.  Roles of brca2 (fancd1) in oocyte nuclear architecture, gametogenesis, gonad tumors, and genome stability in zebrafish. PLoS Genetics 7(3): e1001357. doi:10.1371. (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3069109/pdf/pgen.1001357.pdf)

Nguyen, A.T., Emelyanov, A., Koh, V.C.H., Spitsbergen, J.M., Lam, S.H., Mathavan, S., Liu, E.T., Parinov, S., Gong, Z.  2011.  A high level of liver-specific expression of oncogenic Kras v12 drives robust liver tumorigenesis in transgenic zebrafish.  Disease Models and Mechanisms 4(6):801-13. (http://www.ncbi.nlm.nih.gov/pmc/articlwes/PMC3209649/?tool=pubmed)

Peterson, T.S., Spitsbergen, J.M., Feist, S.W., Kent, M.L.  2011.  The Luna stain, an improved selective stain for detection of microsporidian spores in histological sections.  Diseases of Aquatic Organisms 95:175-80. (http://www.int-res.com/abstracts/dao/v95/n2/p175-180/)

Menke, A.L., Spitsbergen, J.M., Wolterbeek, A.P.M., Woutersen, R.A.  2011.  Normal anatomy and histology of the adult zebrafish.  Toxicologic Pathology.  39:759-75. (http://tpx.sagepub.com/content/39/5/759.long)

Paul, T.A., Rovnak, J., Quackenbush, S.L., Whitlock, K., Zhan, H., Gong, Z., Spitsbergen, J.M., Bowser, P.R., Casey, J.W.  2011.  Transgenic expression of walleye dermal sarcoma virus accessory genes in zebrafish does not result in tissue proliferation. Marine Biotechnology 13: 142-50. (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3364296/ pdf/nihms377715.pdf)

Balla, K.M., Lugo-Villarino, G., Spitsbergen, J.M., Stachura, D.L., Hu, Y., Bañuelos, K., Romo-Fewell, O., Aroian, R.V., Traver, D. 2010.  Eosinophils in the zebrafish: prospective isolation, characterization and eosinophilia induction by helminth determinants.  Blood 116:3944-3954. (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2981543/ ?tool=pubmed)

Zhan, H., Spitsbergen, J., Quing, W., Wu, Y.L., Paul, T.A., Casey, J.W., Gong, Z.  2010.  Transgenic expression of walleye dermal sarcoma virus rv-cyclin gene in zebrafish and its suppressive effect on liver tumor development after carcinogen treatment.  Marine Biotechnology 12:640-649.  (http://www.ncbi.nlm.nih.gov/pubmed/20052603?dopt=Citation)

Koh, V.C.H., Nguyen, A.T., Lam, S.H., Spitsbergen, J., Emelyanov, A., Parinov, S., Gong, Z.  2010.  Molecular Genetics of Liver Neoplasia: The zebrafish model of liver cancer.  In: Molecular Genetics of Liver Neoplasia, Eds. Wang, X.W., Grisham, J.W., Thorgeirsson, S.S. Springer. NY.

Spitsbergen, J.M., Blazer, V.S., Bowser, P.R., Cheng, K.C., Cooper, K.R., Cooper, T.K., Frasca, S., Groman, D.B., Harper, C.M., Law, J.M., Marty, G.D., Smolowitz, R.M., St. Leger, J., Wolf, D.C., Wolf, J.C.  2009.  Finfish and aquatic invertebrate pathology resources for now and the future.  Comparative Biochemistry and Physiology, Part C. 149: 249-57. (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2680143/pdf/nihms99932.pdf)

Bailey, G.S., Reddy , A. P., Pereira, C.B., Harttig, U., Baird, W.,  Spitsbergen, J.M.,  Hendricks, J.D., Orner, G.A., Williams, D.E., Swenberg, J.A.  2009.  Non-linear cancer response at ultra-low dose: A 42,000-animal ED001 study.  Chemical Research in Toxicology 22:1264-1276. (http://www.ncbi.nlm.nih.gov/pmc/ articles/PMC2783240/pdf/nihms118611.pdf)

Ju, B., Spitsbergen, J., Chen, W.  2009.  Co-activation of Hedgehog and AKT pathways promotes tumorigenesis in zebrafish.  Molecular Cancer 8: 40 (epub). (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2711045/pdf/1476-4598-8-40.pdf)

King Heiden, T.C., Spitsbergen, J.M., Heidemann, W., Peterson, R.E.  2009.  Persistent adverse effects on health and reproduction caused by exposure of zebrafish to sublethal levels of 2,3,7,8-TCDD during early development and gonad differentiation.  Toxicol. Sci. 109(1):75-87. (http://www.ncbi.nlm.nih.gov/pmc/articles/ PMC2675639/pdf/kfp048.pdf)

Kent, M.L., Feist, S.W., Harper, C., Hoogstraten-Miller, S., Law, J.M., Sanchez-Morgado, J.M., Tanguay, R.L., Sanders, G.E., Spitsbergen, J.M., Whipps, C.M.  2009.  Recommendations for control of pathogens and infectious diseases in fish research facilities.  Comparative Biochemistry and Physiology, Part C 149: 240-8 (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3270489/pdf/nihms349910.pdf)

Spitsbergen, J.M.  2007.  Imaging neoplasia in zebrafish.  Nature Methods 4: 2-3. (http://www.ncbi.nlm.nih.gov/pubmed/17599082?dopt=Citation)

Lam, S.H., Winata, C.L., Tong, Y., Korzh, S, Lim, W.S., Korzh, V., Spitsbergen, J., Mathavan, S., Miller, L.D., Liu, E.D., and Gong, Z.  2006.  Trancriptome Kinetics of Arsenic-induced Adaptive Response in Zebrafish Liver.  Physiological Genomics 27(3): 351-61. (http://physiolgenomics.physiology.org/content/27/3/351.full.pdf+html)

Lam, S.H., Wu, Y.L., Miller, L.D., Spitsbergen, J.M., Tong, Y., Lee, S., Mathavan, S., Vega, V.B., Liu, E., Buhler, D.R., Gong, Z.  2006.  Conservation of gene expression signatures between zebrafish and human liver tumors and tumor progression.  Nature Biotechnology 24: 73-5. (http://www.ncbi.nlm.nih.gov/pubmed/16327811?dopt=Citation)

Shepard, J.L., Amatruda, J.F., Stern, H.M., Subramanian, A., Finkelstein, D., Ziai, J., Finley, K.R., Pfaff, K.L., Hershey, C., Zhou, Y., Barut, B., Freedman, M., Lee, C., Spitsbergen, J., Neuberg, D., Weber, G., Golub, T.R., Glickman, J.N., Kutok, J.L., Aster, J.C., Zon, L.I.  2005.  A zebrafish bmyb mutation causes genomic instability and increased cancer susceptibility.  Proceedings of the National Academy of Sciences.  102:13194-13199. (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1198999/pdf/pnas-0506583102.pdf)

Kent, M.L., Watral, V.G., Whipps, C.M., Cunningham, M.E., Criscione, C.D., Heidel, J.R., Curtis, L.R., Spitsbergen, J.M., Markle, D.F. 2004.  A digenean metacercaria (Apophallus sp.) and myxozoan (Myxobolus sp.) associated with vertebral deformities in cyprinid fishes from the Willamette River, Oregon.  J. Aquat. An. Health.  16:116-129.

Spitsbergen, J.M. and M.L. Kent.  2003.  The state of the art of the zebrafish model for toxicology and toxicologic pathology research—advantages and current limitations.  Toxicol. Pathol.  31 (Suppl.):62-87. (http://tpx.sagepub.com/content/31/1_suppl/62.long)

Andreasen, E.A., Spitsbergen, J.M., Tanguay, R.L., Heideman,W. and Peterson, R.E.  2002.  Tissue-specific expression of AHR2, ARNT2, and CYP1A in zebrafish embryos and larvae:  effects of developmental stage and 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure.  Toxicol. Sci. 68:403-19. (http://toxsci.oxfordjournals.org/content/ 68/2/403.full.pdf+html)

Kent, M., Bishop-Stewart, J., Matthews, J., Spitsbergen, J.  2002.  Pseudocapillaria tomentosa, a pathogen of zebrafish (Danio rerio) held in research colonies.    Comparative Pathol. 52:354-358. (http://docserver.ingentaconnect.com/deliver/connect/aalas/15320820/v52n4/s13.pdf?expires=1339530035&id=69253655&titleid=72010023&accname=Guest+User&checksum=3486F99CF8E1DD3878399EF1E89F1C38)

Carlson, D.B., Williams, D.E., Spitsbergen, J.M., Ross, P.F., Bacon, C.W., Meredith, F.I., and Riley, R.T.  2001.  Fumonisin B1 promotes aflatoxin B1 and N-methyl-N’-nitro-N-nitrosoguanidine initiated liver tumors in rainbow trout.  Toxicol. Appl. Pharmacol. 172 (1):29-36. (http://ac.els-cdn.com/S0041008X0199129X/1-s2.0-S0041008X0199129X-main.pdf?_tid=ec7739fcde79e6dc5b66c5768d86fe08&acdnat=1339528183_ 279963057c3503e10e5ff85f55eee49e)

Riley, R.T., Enongene, E., Voss, K.A., Norred, W.P., Meredity, F.I., Sharma, R.P., Spitsbergen, J., Williams, D.E., Carlson, D.B., Merrill, A.H. Jr. 2001.  Sphingolipid perturbations as mechanisms for fumonisin carcinogenesis.  Environ. Halth Perspect.  109 Suppl. 2:301-8.  (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1240679/pdf/ehp109s-000301.pdf)

Foster, E.P., Fitzpatrick, M.S., Feist, G.W., Schreck, C.B., Yates, J., Spitsbergen, J.M., Heidel, J.  2001.  Plasma androgen correlation, EROD induction, reduced condition factor, and the occurrence of organochlorine pollutants in reproductively immature white sturgeon (Acipenser transmontanus) from the Columbia River, USA.  Arch. Environ. Contam. Toxicol.  41:182-91.

Spitsbergen, J.M., Tsai, H., Reddy, A.R., Arbogast, D., Miller, T., Hendricks, J.D, and Bailey, G.S.  2000.  Neoplasia in zebrafish treated with 7,12-dimethylbenz[a]anthracene by two exposure routes at different developmental stages.  Toxicol. Pathol. 28:705-715. (http://tpx.sagepub.com/content/28/5/705.long)

Spitsbergen, J.M., Tsai, H., Reddy, A.R., Arbogast, D., Miller, T., Hendricks, J.D., and Bailey, G.S.  2000.  Neoplasia in zebrafish treated with N-methyl-N’-nitro-N-nitrosoguanidine by three exposure routes at different developmental stages.  Toxicol. Pathol. 28:716-725. (http://tpx.sagepub.com/content/28/5/716.long)

Guiney, P.D., Walker, M.K., Spitsbergen, J.M. and Peterson, R.E.  2000.  Hemodynamic dysfunction and cytochrome P450 mRNA expression induced by TCDD during embryonic stages of lake trout development. Toxicol. Appl. Pharmacol. 168:1-14. (http://ac.els-cdn.com/S0041008X00989993/1-s2.0-S0041008X00989993-main.pdf?_tid=e46945f173afad38d879b919738d783c&acdnat=1339527637_f8b8c93ef51abbff933f351d65934840

Diawara, M.M., Williams, D.E., Oganesian, A. and Spitsbergen, J.M.  2000.  Dietary psoralens induce hepatotoxicity in C57 mice.  Journal of Natural Toxins 9:179-195.

Reddy, A., Spitsbergen, J.M., Mathews, C., Hendricks,J.D. and Bailey, G.S.  1999.  Hepatic tumorigenicity  by dietary dibenzo[a,l]pyrene in medaka (Oryzias latipes).  J. Environ. Pathol. Toxicol. 18(4):261-269.

Hornung, M.W., Spitsbergen, J.M. and Peterson, R.E.  1999.  2,3,7,8-Tetrachlorodibenzo-p-dioxin alters cardiovascular and craniofacial development and function in sac fry of rainbow trout (Oncorhynchus mykiss).  Toxicol. Sci. 47:40-51. (http://toxsci.oxfordjournals.org/content/47/1/40.full.pdf+html)

Henry, T.R., Spitsbergen, J.M., Hornung, M.W., Abnet, C.C., and Peterson, R.E. 1997.  Early life stage toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in zebrafish (Danio rerio).  Toxicol. Appl. Pharmacol. 142:56-68. (http://ac.els-cdn.com/S0041008X96980242/1-s2.0-S0041008X96980242-main.pdf?_tid=42570deb5766944dbf4eeaf425a5b11f&acdnat=1339526516_f7ca717789e030355360a60f191d0ae8)

Poulet, F.M. and J.M. Spitsbergen. 1996.  Ultrastructural study of spontaneous orocutaneous neoplasms of brown bullheads (Ictalurus nebulosus). Diseases of Aquatic Organisms 24:93-98. (http://www.int-res.com/articles/dao/24/d024p093.pdf)

Fisher, J.P., J.M. Spitsbergen, T. Iamonte, E.E. Little, and A. DeLonay. 1995.   Pathological and behavioral manifestations of the “Cayuga Syndrome”, a thiamine deficiency in larval landlocked Atlantic salmon.  Journal of Aquatic Animal Health 7:269-283.

Fisher, J.P., J.M. Spitsbergen, R. Getchell, J.Symula, J. Skea, M. Babenzein and T. Chiotti. 1995.  Reproductive failure in landlocked Atlantic salmon from New York’s Finger Lakes: investigations into the etiology and epidemiology of the “Cayuga Syndrome”.  Journal of Aquatic Animal Health 7:81-94.

Fisher, J.P., Fitzsimons, J.D., Combs, G.F. and J.M. Spitsbergen. 1995.    Naturally occurring thiamine deficiency causing reproductive failure in Finger Lakes Atlantic salmon.  Trans. Am. Fish. Soc.  125: 167-178.

Spitsbergen, J.M., and M.J. Wolfe.  1995.  The riddle of hepatic neoplasia in brown bullheads from relatively unpolluted waters in New York State.  Toxicologic Pathology 23:716-725. (http://tpx.sagepub.com/content/23/6/716.full.pdf+html)

Spitsbergen, J.M., and M.J. Wolfe.  1995.  Hepatocyte clusters in the spleen--a normal feature of some populations of brown bullheads in New York State.  Toxicologic Pathology 23:726-730. (http://tpx.sagepub.com/content/23/6/726.long)

Fisher, J.P., J.M. Spitsbergen and B. Jahan-Parwar.  1994. Effects of embryonic PCB exposure on hatching success, survival, growth and developmental behavior in landlocked Atlantic salmon, Salmo salar.  In: Environmental toxicology and risk assessment, 2nd Vol. ASTM STP 1173, eds. J.W. Gorsuch, F.J. Dwyer, C.G. Ingersoll and T.W. La Point, American Society for Testing and Materials, Philadelphia, PA. p. 298-314.

Poulet, F.M., M.J. Wolfe and J.M. Spitsbergen. 1994. Naturally occurring orocutaneous papillomas and carcinomas of brown bullheads (Ictalurus nebulosus) in New York State.  Veterinary Pathology 31:8-18. (http://vet.sagepub.com/content/31/1/8.long)

Poulet, F.M., Casey, J.W. and J.M. Spitsbergen. 1993. Studies on transmissibility and etiology of orocutaneous tumors of brown bullheads (Ictalurus nebulosus). Diseases of Aquatic Organisms 16:97-104. (http://www.int-res.com/articles/dao/16/d016p097.pdf)

Cheng, Li-Lin, P.R. Bowser and J.M. Spitsbergen. 1993. Development of cell cultures derived from lake trout liver and kidney in a hormone-supplemented, serum-reduced medium.  Journal of Aquatic Animal Health 5:119-126.

Spitsbergen, J.M., M.K. Walker, R.E. Peterson and J.R. Olson.  1991. Pathologic alterations in early life stages of lake trout exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD).  Aquatic Toxicology 19:41-72.

Walker, M.K., J.M. Spitsbergen, J.R. Olson and R.E. Peterson. 1991. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity during early life stage development of lake trout (Salvelinus namaycush). Canadian Journal of Fisheries and Aquatic Sciences 48:875-883.

Spitsbergen, J.M., J.M. Kleeman and R.E. Peterson. 1988.  Morphologic lesions and acute toxicity in rainbow trout (Salmo gairdneri) treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Journal of Toxicology and Environmental Health 23:333-358.

Spitsbergen, J.M., J.M. Kleeman, K.A. Schat and R.E. Peterson. 1988. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or Aroclor 1254 on the resistance of rainbow trout, Salmo gairdneri Richardson, to infectious hematopoietic necrosis virus. Journal of Fish Diseases 11:73-83.

Spitsbergen, J.M., J.M. Kleeman and R.E. Peterson. 1988. 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity in yellow perch Perca flavescens. Journal of Toxicology and Environmental Health 23:359-383.

Spitsbergen, J.M., and K.A. Schat. 1986. A chromium release assay for the assessment of spontaneous and immune hemolysis of erythrocytes by sera of rainbow trout.  Developmental and Comparative Immunology 10:11-23.

Spitsbergen, J.M., Schat, J.M. Kleeman and R.E. Peterson.  1986.  Interactions of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) with immune responses of rainbow trout.  Veterinary Immunology and Immunopathology 12:263-280.